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Figure 1. Bond lengths and bond angles for the two crystallographically 
independent molecules, A and B, of tri-s-triazine (1). The separate esd 
values are given in the supplementary material. For the bond lengths and 
angles not involving H, the esd values are in the range 0.003-0.005 A 
and 0.2-0.3°, respectively. 

havior of tri-^-triazine (1) to .y-triazine3,28 is exemplified by the 
decomposition of both in water. The chemical shift value of 8.3 
for the protons in tri-s-triazine is greater than any previously 
observed for unsubstituted azacycl[3.3.3]azines,16c greater also 
than that, S 7.3, for N - C H = N - A r model, AyV-dimethyl-
TV'-phenylformamidine,29 and smaller than the 5 9.2 value for 1H 
in "aromatic" s-triazine.30 The 15N NMR chemical shift of the 
peripheral nitrogens in 1, ~237 ppm downfield from ammonia,31 

is less than that for (15N)-j-triazine, 282.9.32 The central C-N 
bonds are shortened from the usual 1.47-A single-bond distance 
to an observed 1.39-A average value. The deshielded central 15N 
resonance at —186 ppm downfield from NH3 prompts exami­
nation of the ring-current effect on the central N in other rep­
resentative azacycl[3.3.3]azines. Application of the abbreviated 
synthesis to such cyclazines is in progress. 
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Transition-metal ketene complexes have been proposed as in­
termediates in catalytic13 and stoichiometriclb reductions of carbon 
monoxide and as models for the isoelectronic ligand, carbon di­
oxide.2 Complexes that contain highly stabilized ketene frag­
ments, especially diphenylketene, have generally (but see ref 3) 
been prepared by direct reaction of the ketene with a coordinately 
unsaturated metal complex2,4 or by carbonylation of metal al-
kylidenes.5 

We have found a general route to unsubstituted and alkyl-
substituted ketene complexes of titanium and zirconium.6 In an 
attempt to prepare titanocene enolate complexes, the ?72-acetyl 
l7a was treated with CH2PPh3 in dichloromethane-ether at -50 
0C (eq 1). Yellow 1 reacted instantly to give a red solution from 

Cp 2 T i -—0 • CH2PPh3 — 2o • CH3PPh3CI ( I ) 
VCI 

J_ 

which red microcrystalline 2a soon precipitated. Methyltri-
phenylphosphonium chloride was isolated from the supernatant. 
Reaction of 1 with NaN(SiMe3J2 in ether also gives 2a. The 

/ 0 /CH 2 

Cp2Ti^I Cp2Ti^I 

^ C H 2
 0 ^ O 

L Jn 
2o,b 3 

product is a moderately air-sensitive solid that is stable at room 
temperature for several days under an inert atmosphere and is 
sparingly soluble in a variety of solvents but decomposes rapidly 
in methylene chloride. In benzene, red 2a isomerizes to yellow 
2b, reaching equilibrium in a matter of minutes at room tem­
perature. The ratio of 2a:2b at equilibrium is ca. 1:10. The yellow 
isomer crystallizes from benzene solution. Several lines of evidence 
suggest that 2a and 2b have the basic ?;2(C,0) ketene structure 
shown. The 1H NMR spectra exhibit inequivalent methylene 
protons for each isomer with chemical shifts and coupling constants 
in the range typical of terminal olefins.8 An t/2(C,C) ketene, 3, 
should show a single methylene resonance. The proposed structure 
is similar to that observed for diphenylketene complexes of Ti, 
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tanium acyl complexes13 (ca. 300 ppm) and enolates14 (ca. 170 
ppm). It is likely that 2a and 2b exist in oligomeric forms (n > 
1) and differ in their mode of aggregation. Attempts to obtain 
diffractable crystals are in progress. 

The generality of the dehydrohalogenation is illustrated by the 
reaction of the zirconium acyl 77b with NaN(SiMe3)2 in toluene 
at room temperature to give the remarkably stable dimer 8. 
Although ketene 8 affords 7 on reaction with HCl, it is inert 
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V,2 and Zr.3a Furthermore, both isomers are converted cleanly 
to the starting acyl 1 on treatment with 1 equiv of HCl gas in 
toluene at -50 0C. Complex 2a reacts readily at room temperature 
with ethylene (ca. 1 atm, C6D6) to give purple 4 (Scheme I) and 
with acetylene to form green 5.9,10 The same products are formed 
from 2b, although much more slowly. Complex 2a reacts rapidly 
with Me2PPh to form adduct 6, which is sparingly soluble in ether 
but highly soluble in benzene." This yellow complex reacts 
rapidly with acetylene to produce 5. Preparation of 13C-enriched 
2a and 2b12 shows similar 13C NMR shifts (220 and 197 ppm, 
respectively) for these isomers in the range between that of ti-

toward a variety of reagents, including ethylene and acetylene. 
The 1H and 13C NMR spectra15 of 8 are similar with those of 2a 
and 2b. The neopentyl group is assumed to occupy the sterically 
less crowded exo position. Monitoring the formation of 8 by NMR 
reveals no evidence of isomeric structures or intermediates. The 
importance of dimerization as a factor in the low reactivity of 8 
has been demonstrated by preparation of highly soluble, mo­
nomelic decamethylzirconocene derivatives that undergo a number 
of facile reactions.16 

The dehydrohalogenation of these chloroacyl complexes may 
proceed in a stepwise or concerted manner (Scheme II). The 
feasibility of the anionic intermediate 9a and the acidic nature 
of the a protons in these group 4 acyl complexes is established 
by the deprotonation of Cp2Zr(COCH3)CH3

17 with NaN(SiMe3)2. 
The reaction in ether is rapid at -30 0C and the white salt 9b-Et20 
precipitates in high yield.18 Alkylation of this anion with methyl 
iodide in tetrahydrofuran produces Cp2Zr(COCH2CH3)CH3

19 as 
the sole product upon mixing at room temperature. 

We have demonstrated that this route can be used to generate 
a variety of ketene complexes that show a range of reactivities. 
Their use as models for catalytic intermediates as well as reagents 
for organometallic and organic synthesis is under further study. 
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